W,

F
“AD=A039 744 FEDERAL COBOL COMPILER TESTING SERVICE WASHINGTON D C F/6 9/2
AN EXPERIMENT IN THE USE OF SYNTHETIC PROGRAMS FOR SYSTEM BENCH==ETC(U)
l MAY 77 P OLIVER: 6 N BAIRDr M M COOK
UNCLASSIFIED FCCTS/TR=T77/07
END

NL
' | oF |
e

DATE
FILMED

C==77

1.0 ke g2
=5

e

HNEE
=

22 s nee

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-7

+4

!,

(g
X

AG397

FILE COPY

mm\ S —

;//;/

o7 g / v
/ / =

‘ B
An experiment in the use of synthetic programs for system

benchmarking

r=nn
MAY 2 1977

by PAUL OLIVER, GEORGE BAIRD, MARGARET COOK, ARNOLD JOHNSON and PATRICK HOYT

Department of the Navy
Washington, D.C.

BACKGROUND

Competitive computer system selection requires a tool for
minimum performance measurement. The selection process
must be fair and, ideally, brief and economical. Thus, the
measurement tool must be visibly fair and impartial in its
measurement of a computer system, it must relate what is
being measured to user needs, and it must be economical to
apply. The thrust of several ongoing “‘standard benchmark”’
efforts in the Department of Defense and other Federal
Government agencies is to develop a measurement tool with
these qualities.

There are several characteristics of computer systems
which can be measured for the purpose of selection:

(a) Availability of equipment and software, in terms of
reliability, maintenance time, and the like.

(b) Work capacity, which can be measured from a variety
of viewpoints. Job time is a single-job measure and, therefore,
not often used. System throughput is a measure of how much
work is done, and is a function of the job mix and job load,

as well as various system parameters. Response time is a

measure of the quality of service rendered, and is largely
dependent on operating system and hardware characteristics.

(¢) Functional capabilities are susceptible to qualitative
judgments, but demonstrations of these capabilities are often
required of computer system vendors (e.g., a demonstration
of an on-line text editor).

In the context of computer selection, we have felt it pru-
dent to limit the scope of our efforts to measuring through-
put capacity, recognizing, however, that the other factors
may take on paramount importance under varying circum-
stances.

Relation to performance evaluation

It is important that we recognize the affinity of any bench-
mark study to the subject of computer performance evalua-
tion, since some combination of evaluation techniques will
of necessity be used in the development of “standard bench-

marks.” These techniques can be broadly classified and
characterized as follows:!

(a) Task-oriented techniques concern themselves with sys-
tem throughput capabilities with respect to a given work-
load. Simple instruction timings reduce the “workload” to
specific classes of instructions (add time, floating-point multi-
ply, ete.). Instruction mixes consist of “‘representative’” sam-
ples of instruction sets designed to reflect the degree to which
each instruction class is used for a given type of application.
These are adequate for estimating processor power, but com-
pletely ignore memory, degree of multiprogramming, I,0
loads, etc. Kernels are relatively small sequences of code
performing a single (simple) function (e.g., a table search),
and, again, are designed primarily for measuring processing
power. The timings for kernels may be obtained by actually
executing them or by hand-calculations. Benchmarks consist
of a subset of a given workload (‘“natural’’ benchmarks), a
subset which has been further modified (“hybrid” bench-
marks), or a set of programs written specifically for the pur-
pose of making a comparative evaluation (“synthetic’’ pro-
grams). Benchmarks are processed on the configurations
being evaluated or compared, and the processing time is
used as a relative figure of merit.

(b) The emphasis in component-oriented evaluation tech-
niques is on the system being evaluated rather than on the
workload to be processed by this system. Hardware monitors
are relatively inexpensive, precise in what they measure,
non-disruptive, but insensitive to data-dependent informa-
tion. The characteristics of software monitors are almost
the precise opposite of those for hardware monitors. The
convenience of queueing models is offset by their inaccuracy
and shallowness. Stochastic models (simulation models) are
less imprecise but costly, and suffer from a credibility gap.

Problems with natural or hybrid benchmarks

Benchinarks have for some period of time constituted the
accepted form of minimum performance measurement in
computer selection throughout the Federal marketplace. Nat-
ural or hybrid benchmarks have the advantages of dealing

432 National Computer Conference, 1974

>

X-30 PRINTER

INPUTS X-65 UNIVAC-1108

X-66 UNIVAC-1108

SOURCE COMPUTER,

XXXXX65 .
POPULATION OBJECT COMPUTER .
FILE KXXXX66 .
FORMAT
FILE CONTROL. SELECT RESULTS ASSIGN 70
XXXXX30.
SOURCE COMPUTER ,
COMPILATION UNIVAC-1108,
TIME
FORMAT OBJECT COMPUTER .

UNIVAC-1108.

FILE CONTROL. SELECT RESULTS ASSIGN TO PRINTER.

Figure 1--Example of VP-Routine input, population file form of audit
routines, and compilation-time form of audit routines

with a real system (thus avoiding half of the simulation
credibility problem) and a “‘semi-real” job mix. Among the
more serious problems associated with benchmarks are the
following:

(a) It is extremely difficult, except in the simplest situa-
tions, to construct a set of benchmark programs which
accurately reflects a given job mix. This of course is a prob-
lem common to any performance measurement technique,
since the nature of “a given job mix” is dependent on a
multitude of parameters, many of which are system de-
pendent (e.g., £Xecute Channel Program instruction counts
are often used to measure I/0 time on IBM S/360 or S/370
systems, but these instructions have little meaning outside
the 8/360-370 series, and often have no precise counterparts
on other systems) and most of which are time dependent.

(b) They are generally non-portable (system dependent)
and often do not run correctly, even on their native system.

(¢) They are prepared and processed using a variety of
procedures resuiting in unduly long execution times, un-
reasonable file volumes, and inconsistent measurement pro-
cedures. This author has seen benchmarks for which the
required processing time was better than three hours, and
the file population resided on two dozen (full) tape reels!
In some cases only processor time is measured; in others, all
components (including, e.g., printers) must halt before timing
stops.

(d) The above problems result in extremely high costs, to
buyers and vendors, in terms of both time and money. It is
not unusual for a vendor to spend 6-9 calendar months just
to prepare the submitted benchmarks for processing, or for
the cost of processing them to be 10 percent or more of the
eventual bid price.

SCOPE OF THE U. S. NAVY EXPERIMENT

The Software Development Division of the Department

of the Navy Automatic Data Processing Equipment Selection
Office (ADPESO) is performing an experiment to determine
the suitability of synthetic programs in alleviating the prob-
lems created by naturai and hybrid benchmarks.
* The experiment began in June 1973, with the development
of a small (5 program) reference library of synthetic programs.
We assumed that synthetic programs could be written so
that relatively few parameters control their behavior; experi-
mentation could be performed on these programs so that
their behavior relative to changing parameter values would
be predictable; specifications of a workload based on the
parameters vnplicitly defined by the synthetic programs could
be made, and synthetic program parameters could be set so
as to reflect this workload.

The use of synthetic programs in performance evaluation
does not represent a new concept. Dopping,? and Gosden and
Sisson? reported on experiments in the use of synthetic pro-
grams as far back as 1962. More recent suggestions on their
use have come from Joslint and Buchholtz.5 Our aims have
been to obtain quantitative profiles of certain synthetic pro-
grams and to determine the scope of their feasible utility.

RELATED EFFORTS

There are several complementary efforts in the Federal
Government aimed at designing representative benchmarks.

The U. S. Army Computer System Support and Evalua-
tion Command has recently issued a solicitation for a ‘“Stand-
ard Benchmark Study.” The contract objectives are (a) The
definition of all tasks and measurable functions performed
by a computer in executing business-type applications; (b)
Development of a method or technique of identifying and
measuring the occurrence of each function or parameter in

PROJECT: SYNTHETIC BENCHMARKS
MODULE: SEQUENTIAL I/0
COMPILE TIME PARAMETERS:
1. Racorde/Block - for all files; impacts buffering.

2. DRacord Size - for ail files and to reflect application.

3. l.gr: Variabia - used o vary accuracy requirement ia compute
rnel .

4. Table Size - to impect memory requiremente.

S. Data Types - to reflect spplicaticn.
EXECUTE TIME PARAMETERS:

1. Mester Tile Size -~ to impect i/o time

2. Detai] File 5ize ~ in conjunction with “repetitions” can impact
processing time.

3. Qapetitions - nusber of repetitions of 2 compute kersel per
master-detall watch.

WOTE: See listing for more datails.

Figure 2- -Sequential 1,0 module parameters

An Experimen in the Use of Synthetie Programs for System Benchmarking 433

each task for the purpose of profiling computer workloads.
This solicitation is the result of a careful study on the part
of a Department of Defense Joint Steering Committee which
has, among other things, defined a preliminary set of applica-
tion tasks and task parameters for benchmark purposes.

The Department of Agriculture has constructed a com-
prehensive set of benchmark programs which include trans-
action process:ng and data base management applications.
There is much in this package which should be carefully
studied as part of any effort at designing a library of standard
benchmark programs.

The Department of Labor is developing a job selection
simulation model® using actual utilization statistics as control
parameters. Although the goals here are somewhat different
from those of the “standard benchmark effort” there may
be some related spinoff benefits.

A similar project is being carred on by Marine Corps using
hardware monitors to provide data for the synthetic creation
of jobs.?

RESULTS
The programs

Five processing tasks were selected as representing, in
varying combinations, a broad variety of application tasks.
These were sequential file processing, indexed sequential file
processing, relative I/O processing, sorting, and computation.

Programs were written to perform each of these tasks.
Because most of the Navy's present benchmark needs relate

PROJECT: SYNTHETIC BENCHMARKS
MODULE: INDEXED SZQUENTIAL UPDATE
COMPILE TIME FARAMETERS:

1. Memory Variable - is set by sdjusting the size of a table in
working-storage. This is available to vary the memory storage
requirement of the program.

2. Racord size - Default is BOO characters.

3. Block size - Defaulc is 10.

4. Index kay size - Default s 10.

EXECUTE TIME PARAMETERS

1. %gr Tile s’ng - sete the oumber of vecords to be crested for
master file.

2. Datail Pile Size - sets the number of transacticas to be processed
against the master file to measure 1-0 processing.

(o) Mﬁg& - 18 percent of detail tremssctions vhich
initiace deletion of saster records (default is 10 percent).
This parsseter is available to Ssasure the sffect of record
deletion type ons on 1-0 time.

(%) Additton Percent - 1s percent of detail transections vhich
#4d records to the master file (default is 10 percemt). Thiv
parasster is svailable to measure the aifect of trsussctios
{asertion into the index file on 1-0 processing time.

(¢) Saquential Percent - parcent of detail transaction which {oiciate
Procesning the index file sequentially (default is 5 percest).
This s to measure the affect on -0 processing when accessing
the {ndex file sequentisily.

3. Computstion Repetitions - sets the fumber of ctimae the program
cyeles through cocpute bound procedurde. This parameter 1s
available to place a workload on the CPU.

Figure 3—ISAM module parameters

PRONICT: SYNTEETIC BRMCIMARES
MODULE: RELATIVE 1/0
COMPILE TIME PARAMETERS!

1. mmmﬂuﬁmmm-m—-'mm“n-
the user can request & larger record.

2. s - miaimem of 1 record per bleck -
weat B4y roquest o T block eise if applicabls.

EXBCUTE TIME TARAMETERS:

1. Byber of Mester Macords -(3,000 defeult) - the weer could reguest «
lerger or smaller mumber of records.

2. Opder che Records ere gregted - (sequencial dafeult) - The defealt
Comses the files to be crested with 101 “wissing” vecerds, 1.s. 3,000
records from 1 to 5,500. The vser msy request that & differest per-
centage of gaps be left ds for

3. Bber of Detat) Racords - (2,500 defeult)

4. Pegcest of the Pollowing - (1002 total):

(a) Datail records which match Baster records and cause as wpdats
to taks place. (23X default).

(b) Detail racords which metch waster records end couse the msster
record to be delated.

(c) Datail records which do mot mstck mester records amd cawse ¢
sew mastar vecord to be created

Figure 4 Relative [/0 module parameters

to COBOL-oriented workloads, all of the reference library
programs are written in American National Standard CO-
BOL. Additionally, all the programs are in “system inde-
pendent” form. This is accomplished through the use of an
executive program, the VP-Routine. The VP-Routine was
developed in 1969 by the Department of the Navy as part
of its COBOL Compiler Validation System® It is used to
resolve implementor names (e.g.. in the ENVIRONMENT
DIVISION), modify compile-time parameters (e.g., record
sizes, precision, blocking factors), and automatically generate
job control instructions appropriate to the system we are
executing under (Figure 1).

Each program is controlled by a set of compile time and
execution time parameters. Figures 2-6 identify these for cach
of the five programs. The ability to vary automatically cer-
tain parameters at compile time provides us with the flexibil-
ity to develap & fairly rich mix from just a few basic programs.

We have adopted certain design principles which, while
applicable to software design in general, we felt were par-
ticularly important to this project.

(a) We have attempted to make every detail of the struc-
ture of each program visible and understandable to a prospec-
tive user. This is a prerequisite to a “sellable” product.

(b) The design of each program is consistent with that
of the othere. We have used “modular programming”
throughout, although, frankly, this was simply a reflection
of following long accepted standards of good programming
practice. We maintained consistency in the binding time of
parameters across programs. Thus, if a given parameter is
bound at compiie time in one program it is bound at compiie
time in all the programs. Also, all files used by a program are
generated by that program (eventually, the file generation
modules may be combined into one program).

(c) We have isolated the function of each of the program
parameters 5o as to render each parameter independent of

~r

-

434 National Computer Conference, 1974

PROJECT: SYNTMETIC BENCMMANKS
MODULE: SORT
COMPILE TIME PARAMETERS!

1. Becord Length - Used to impect

(a) Buffer size.

(¥) Transfer time.

(c) laternal and external storags requirements

(4) Whacher minizum and meximum logicel sise of applicacions
can be handied.

(¢) Whather sort cas haadle varisble length logical recovds.

2. Blocking Pactors - Used to affect

(8) Buffer oize.

(b) Tranafer time.

(¢) Racio of inter-record Baps/dats for magnetic tape; hesce
axternal storage requirements.

(4) Mass storage parcition use/vasts ration; heace mase atorage
requirements and ousber of seeks aad transfers required.

(e) Mhetner minisum ¢od mazimus poysical record sise caa be
handled.

(f) Whether paddiag is Tequired.

(g) Whether extra characters sust be added to ssch physicsl record
1f che file is blocked.

(b) Provides a vay to increass 1/0 tims used for a sisgle trassfer
to change 1/0 to computer ratio.

3. Tmber of Scrt tays - Affscts

(2) Number of sort passes d to p

{b) Test that the oumber of keys allowed in e siagle sort step
aquais these required by an applicatiom.

{c) Total length of scrt field.

4. Iype of Sort Kays - Detarmines

(a) Whether all cypes of keys required by sa spplicatios can be
handled (aumeric, alphabecic, alphanumeric, signed, ¢scissl
poiate).

(b) Time required for various types of comperisons, swmeric ve.
alphaaumeric.

(c) Potacs out the collating sequence used by the machise for
sorcs and compares.

3. Order of Sort Kays - Prevent cheating by setting at test time to
compare resulte agsimst predicced behavior of fimsl sort sequesce.

6. 1 r_descending sort -~
CEBCUTE TONE PARAMETERS:
1. Mmbec of Secords -

(a) Total data voluss for imput.

(b) Whethar sort can be done completely in core.

(c) Amount of ca sass for
etriange.

1. Smber of Computations on I/Q -

(a) Abiiity to simulate smcunt of wodificatico dome duriag eort

procass.
(b) Cbanges racio of added / 1/0

BOTE: Although not specifically specified as a compile time parsmster,
the fils sassigments for INPUT-FILE, SORT-TILE, end OUTPUT-FILE
can change the basic sort tstics froo wass 'age to
tape oriestation. This sffects file rewiad time, tramsfer rates,
and blooklag comwventions .

Figure 5—SORT module parameters

the others. This was necessary to avoid facing an exponen-
tially rising set of options in setting parameters to control
program behavior. This was a difficult principle to follow
since, for example, a simple specification such as how one is
to control I/0 time can be made in terms of file size, blocking
factor, logical record size, etc. In this case we could choose
to use filo size to effect time, blocking factor to impact buffer-
ing, and maintain logical record size constant.

(d) Only those functions which were felt essential to the
accurate modeling of a task were included in each program.
Thug we apted for a clearly defined scope and simplicity
rather than complexity. We feel this was particularly im-
portant in the selection of synthetic program functions and
parameters, since a lack of frugality can lead to a level of

PROJECT: SYNTHETIC BEXNCHMARKS
MODULE: COMPUTE
COMPILE TIME PARAMETERS®

1. Table Size - used to vary the size of an in-core table, thus
allowing for wodification of memory requirements.

2. Dats Descriptions - sodified Ly appropriate changes to respective
PICTURE clauses. Used to Vary compulation accur<cy requirements
and processing time,

* EXECUTE TIME PARAMETERS:

1. Constants - for randow nusber geoerator

~ £o vary CPU activiry.

2. Processing lerat

3. Accuracy Parasmeter - used L0 vary accuracy requirements.

4. Processing Deiecion Switches - to iodicate coding to be s ipped.

NOTE: All parameters have default values -- see progras listing for detatls.

Figure 6 Compute module parameters

complexity in the programs which would have rendered them
completely unamenable to analysis.

(e) The design of each progran (and of the set of programs
as a whole) lends it elf to extension, so that a wide range of
task characteristics can be accommodated.

Each program is sclf-documented. A “prologue” is in-
cluded for each and commenting is plentiful, though perti-
nent. External documentation consists of a “module over-
view” (see Figure 7), purameter specifications, experimental
results, and a User Guide to assist an organization in imple-
menting the programs and using the VP-Routine. We have
avoided lengthy descriptions and detailed flowcharts because
we question their usefulness.

PROJECT: SYNTHETIC BENCHMARKS
SEQUENTIAL MODLLE GVERVIEW

PROGRAN-1D: SEQPRGAM
PURPOSE

This synthetic progran is designed to reflect the properties
of & saquantial file updste process.

in (ts machine Indepandent form SIQPRGRR (s designed to be
wsed In conjunction with the VP-routine (see references). In
machine dependent form, SEIQPRGAM (s & stanc-alone progras.

This progrem was davelooed on & UNIVAC-1100 Svatem. it s
dusigned to function correctly wnen trensiated by » COBCL
comp!lar conforming to Fedaral COBOL stancares as interpreted
by the COBOL Compiler Validation Systes.

Mestar and detal! sequentisl flles are created, togeth.r with
a in-cors tabla. Timing for this program s than initlated.
T™ve master flle is comparec agelinst the detail file winti! a

koy moich is made. For sach occurrence of & key satch an update
of the mester fiis is made (cresting & new master file), and o
compute karnal iy exacuted a verying nusber of times. When the
datai! flle (s ashaustad,timirg for this program is terwminated
ond & summary record s wricten.

REFERENCES :
Wavy COBOL (ompliar Validation System Lser Gulde

Informetion Systees Division (Cp-91)
A synthatic job... ducknoltz, 18N Syn. J. (8), 1963

Figure 7 Exaraple of a synthetic module overview

An Experiment in the Use of Synthetic Programs for System Benchmarking 435

15

Memory
Seconds ®

L
K.
1000

No. Master File Records
(Detail Fil. Size is 10)

Figure 8—Sequential file update time as a function of master file size—
no CPU -~ctivity, drum-resident files

The programs, documentation, and VP-Routine are col-
lected on a 2400 foot magnetic tape revi. The User Guide
and experimental results on program behavior are separately
bound. The entire package is in the public domain.

Examples of processing results

A complete summary of processing results is beyond the
scope of this paper, but we can discuss some of the more
interesting of those results. All results mentioned are based
on executions on a UNIVAC 1108 Unit Processor, under
control of the EXEC-8 Operating System.

The “sequential 1/0” module is the simplest f the file
processing programs. Its function is to pass a master file

against a detail file, creating @ new master file. The files

may reside on tape or direct access devices. A compute loop
may be performed a variable number of times each time a
master file record is updated. The processing includes a
table search, and the size of the table is used to control
memory requirements. All computations are self-checking.
The program is similar in thes~ and other characteristics to
the PL/1 program described by Buchholz.®

Predictably, we found I/0 time to be a linear function of
master file size. This was true for FASTRAND (drum)
resident as well as tape resident files. Repeated runs during
different times of day showed that the curve reflecting the
behavior of time as a function of master file size remained a
straight line with constant slope, although the intercept
value changed (Figure 8). In all these runs, only the master
file size was varied (from 100 to 5000 records), with the detail
file size fixed at 10 records), and only one pass through the
compute loop was performed.

We processed a series of similar runs with all files residing
on UNIVAC 8-C tapes. Again, running the program in a
mix did not change the linear behavior of time as & function
of file size (Figure 9). As before, the detail file size was held
constant, and only one pass through the compute loop was

40 o
<
]
© ® o
;?nry Lo L4 ©
conds ° 8 .o o
o L
o ® +
4 o) ®
3 o
3 o .
*
 J
L 4

&

1000
No. Master Pile Reocrds 2000

(Detail File Sise 1s 10)

Figure 9—Sequential file update time as a function of master file size-—
no CPU activity, tape-resident files

performed on each record update. Thus, while other programs
in a mix clearly affect the quantitative behavior of a sequential
update task, they appear to have almost no effect on its
qualiiative behavior.

CPU time turned out to be a linear function of the number
of repetitions through the compute loop.

Execution of the “compute” module produced some inter-
esting results. The program generates a variable-sized table
of uniformly distributed pseudo-random numbers, performs
a “runs-up-and-down” test on them, and optionally pro-
duces printer output. A parameter controlling the number
of processing iterations is used to vary the amount of CPU
activity.

100

Number iterations {n compute loop

Figure 10-—Compute module CPU utilization as a function of number
of iterations in the computation loop

-~

M 3 Pk e e g .. ~

436 National Computer Conference, 1974

CPU Time (minutes)

:::::: xz:m CPUS D;:migii;_;i_u_) {Computational Mode)
20 .083 .643
100 .816 .007
200 1.497 .515
500 4.525 1.966
1,000 9.531 2.990
1,700 14.945 5.062
5,000 45.524 14.156
10,000 89.941 23.324
20,000 158.507 47.696

Figure 11— Compute module CPU time utilization as a function of
number of iterations in compute loop

When the number of iterations reached a certain threshold
(usually 500) the CPU time varied linearly with this param-
eter. Below that point, however, we noticed some fluctuations
(Figure 10). We believe this is due to the way the EXEC-8
dispatcher schedules jobs for CPU time. (It uses a variation
of Corbato’s time quantum charging algorithm.?)

Figure 11 summarizes two executions, run under identical
conditions. The only difference was that in one the usage of
variables was “computational,’”’ in the other “display.” As a
program becomes CPU bound an exorbitant price is paid
for the “machine independency” of data.

Figure 12 shows the relationship between memory time
(for a given program, a memory second is defined as the
occupation of 32K words of memory for a period of one
second, during which time the program is undergoing either
CPU or 1/0 activity) and the size of the file being sorted
for the “sort’” module. Again, we found a linear behavior,
and this pattern was consistent regardless of other jobs in
the mix, time of day, ete. Fluctuations at the low end of the
line were due, as in other cases, to EXEC-8 allocation
characteristics.

Problems encountered

We feel confident, based on our tests thus far, that we can
indeed modify program parameters, for the modules we have
produced, in such a way that we can foree a predictable
behavior on the programs, in terms of both time and pattern.
This, however, only tells us that we can control the programs
—a necessary but not sufficient condition if we are to create
synthetic benchmarks.

We have also encountered certain difficulties with the
synthetie program approach. Not all of these are unique to
this approach, but this offers us little solace. The following
were the most serious of these problems:

(a) Because synthetie programs tend to be stylized, they
may produce surprising results. For example, an opti-
mizing compiler can have a much greater impact on a

synthetic benchmark than on a natural one. Yet,
user workloads are “natural,”” not synthetic. We have
found that PERFORM sections which are called only
once, and not otherwise entered, are placed in-line by
many compilers, but not by all. This creates no diffi-
culties if a user creating a set of benchmarks knows

‘ what his compiler does, but he does not have to know.
Also, sequences of code such as

I=I+1
A=I,

where [is a loop-control parameter (the syntax here
is FORTRAN but the principle is equally true or
COBOL) are generally not performed as such by an
even moderately intelligent compiler.

Another problem we have encountered is that over-

(b)

~

whelming side efiects can oceur in overly parameterized
synthetic programs. For example, the COBOL PER-
FORM verb translates to 14 instructions on one
system we executed under, while the MOVE verb
translates to 1 instruetion. Thus, using the PER-
FORM instruction to vary the number of times a
MOVE instruction is executed leads to grossly mis-
leading resulis when the PERFORM itsclf is the
object of yet another PERFORM.

(¢) One needs to understand the “native” system in some
detail in order to develop benchmarks purporting to
accurately reflect a given workload for that system
Some of the test results cited above, for example,
were clearly due to the nature of the system on which
the programs were executed. This means that guide-
lines on how to use the synthetic modules will differ
with differing systems. Also, it is easy to create an
unduly complex program (in terms of possible combi-
nations of parameters) if the architecture of the native
system is not understood. Repeating, for instance, a
serics of COBOL MOVE's, varying field sizes each
time, accomplishes nothing more than what could be
accomplished by moving a fixed size variable on IBM
§/360 computers, since a single machine instruction,
MVC (move character) is used regardless of field
size. Yet, on a UNIVAC 1108, changes in object code

MEMORY
SECONDS 'S

L]

° L

0
0 100 1000

Figure 12--8ort module memory seconde utlization as a function of
number of records sorted

~

/

An Experiment in the Use of Synthetic Programs for System Benchmarking 437

do occur at certain field sizes. Also, moves of literals,
numerics, and character fields are usually all per-
formed in the same way, so that incorporating all of
these in a program is simply adding to the combi-
nations of parameters without really contributing to
the value of the program.

(d) We see no evidence of a satisfactory way of modeling
a workload. Even a simple I/0—CPU analysis of a
file maintenance problem depends on a multitude of
parameters: proportion of active to passive records,
distribution and location of active records in the master
file, number of instructions executed per active/in-
active record, record size, frequencies with which in-
structions are executed, ete. This difficulty is seriously
aggravated in a miz of programs. It is not at all clear
that techniques for matching job parameters to mix
parameters is feasible. The use of analytical models to
characterize a job mix and thereby provide inputs to
the synthetic programs! is clearly unsatisfactory, since
the limiting factor would then become the analytical
techniques themselves. This class of techniques is
already regarded as grossly imprecise.

The use of software monitors for data collection is likewise
unacceptable since they create serious instances of the
“Hawthorne” effect.’® This could possibly be compensated
for, but with considerable difficulty.

In fact, it is important to note that all suggestions on
how to model a workload rely on one of the evaluation
techniques previously surveyed (monitors, simulation, ete.).
Thus, we should not expect the synthetic mix approach to
be an improvement over these.

The problem of “representativeness” which exists in
natural benchmarks will simply not disap,«<ar just because
we use synthetic programs. We have cited the system de-
pendency of workload parameters (particularly as they apply
to I/O time) and the sheer magnitude of the number of
combinations of program parameter values. An equally
crucial problem is the fact that the nature of 8 workload is
time dependent. Any attempt to condense a workload into a,
say, two-hour benchmark is bound to result in substantial
homogenization, and some important characteristics could

10,500 250

o 202504\ g 200

: §

!

C s.onﬂT\ % 1504

2l = :

" 8,750 f - 3 1004 t

T ASOND J P M JASONRND J T N

UNC Model 75 Utilization
July 1969 - March 1970
(== glves avirape for July 1968 - March 1969)

Figure 13 Monthly utilization profile (Source: Annual Report, Uni-
versity of North Carolina Computation Center, 1970)

A2 3 &5 0 7 & 9 N0 1L 1 AD 14 ED 16 A7 18 1920 21 22 20 26 25 26 27 28 29 30 3\

Daily Madel 75 L..go, Tebrusey, 1972

Figure 14—Daily utilization profile (Source: Annual Report, University
of North Carolina Computation Center, 1970)

be lost. As a simple example, the annual workload of a com-
puter center, in terms of productive hours, is given in Figure
13. It suggests that there is plenty of excess capacity. Yet
the workload cn a typical mid-week day shown in Figure 14
indicates that for this period the system was saturated. We
know of no satisfactory techniques which allow us to model
this behavior for the purpose of building benchmarks.

CONCLUSIONS
Can a controllable job miz be constructed?

We believe, on the basis of our experience thus far, that
task-oriented synthetic programs can be combined into a mix
which can be controlled to exhibit desired processing time,
memory, I/0 time, and I/O devices utilization character-
istics. There have been other efforts that bear this out.!
We plan additional testing on a variety of systems so as to
learn more about some of the system dependencies we have
encountered.

Can a workload be profiled?

We do not believe that it is possible to arrive at a gener-
alized, comprehensive, and accurate model of system work-
loads except in the most trivial cases. We can certainly
retrofit. That is, we can accept a workload definition based
on the synthetic program parameters. We also believe that
this need not impede the use of synthetic programs in bench-
marks. In this, we strongly support the view expressed by
J. C. Strauss. In a recent paper on the use of natural bench-
marks, he stated that, based in part on prior experience and
on the difficulties encountered, “it was felt more important
that the behavior of the benchmarks be well understood and
cover a broad range of important system features than that
the complete benchmark series be representative of the
general workload.”

438 National Computer Conference, 1974

Other uses for synthetic programs

Isolated system characteristics can be exereised using syn-
thetic programs. We have in fact used the I/0 modules in
our reference set to test various operating systems data
management capabilities. Synthetic programs also serve as
convenient tools to determine the impact of certain pro-
gramming practices, as was done in using the “compute”
module to measure the degradation, on a specific system,
resulting from COBOL DISPLAY mode computation.

A recommendation

We feel our testing has substantiated our original as-
sumptions. A small number of simple, task-oriented, syn-
thetic programs can be combined into a fairly rich and
versatile job mix. A relatively small number of parameters is
sufficient to enable a single program to reflect the character-
isties of a broad class of applications. Also, individual modules
have proven useful in exercising isolated computer system
features, such as I/O handling. Finally, if one accepts a

A reference set of “controflable” programs is a useful tool
for any data processing installition. Our concern was pri-
marily with benchmarks for system selection. We have indi-
rated that performance measurement is a related area of
application. System sizing, throughput estimates against a
changing workload, expected response time to a varying

stimulus, and availability measurements are other reasonable

applications for a sct of synthetic modules. The modesty of
the effort required to produce such a set certainly commends
further study.

REFERENCES

1. Lucas. H. ., “Performance Evaluation and Monitoring,”” ACM
Computing Surveys, 3, 3, 1971,

2. Dopping, 3., “Test Problems Used For the Evaluation of Com-
puters,” Bit, 2, 4, 1962,

3. Gosden, J. A. and R. L. Sisson, “Standardized Comparisons of
Computer Performance,” Proc. 1962 IF1P Congress.

4. Joslin, £ 0., “Application Denchmarks: The Key to Meaningful
Computer Evaluations,” Proc. 20th ACM Nat. Conf., pp. 27-37,
1965

“modest” workload characterization, aimed more at re- 5. Buchholz, W., “'A Synthetic Job for Measuring System Perform-
flecting extremities and crucial areas rather than compre- ance,” IBM System Journal, Vol. 8. No. 9, 1969 e
hensiveness, it is possible and reasonable to construct a 6. Byme, T. A., et al, “A Joh Selection Simulation Model,” Sym

benchmark from a set of synthetic modules.

Synthetic programs are neither difficult nor expensive to
produce. Our present set, admittedly small, was designed,
coded, and debugged in two calendar months. An additional
three months were required for experimentation, packaging,
and system documentation. These times do not consider the
VP-Routine, which was already available. Total manpower
used for the effort amounted to four man-months. Total
cost, including machine time, clerical support, and salaries
was under $6,000. Furthermore, the system is available to
anyone upon request. Thus, we feel we have made a small
investment for a product which has already given a sub-
stantial payoff, in what we have learned if nothing else.

posium or the Sunulation of Computer Systems (ACM), June, 1975

7. Hesser, W. A, “Creation of a Simulation Model From Hardware
Monitor Data Using the SAM Language,” Symposium on the

Stmulation of Computer Systews (AMC), June 1973,
8. Baird, G. N, “The DOD COBOL Compiler Validation System.”
Proc. FICC, 1972.
. UNIVAC 1106 Series Operating System Programmer Refercnce, UP-
4144, Sperry-UNIVAC (1473).

10. Ferrari, D)., “ Workload Characterization and Selection i Computer
Performance Measurement,” [EEE Computer Journal, July
August, 1972

11. Wood, David C. and Ernest H. Forman, “Throughput Measure-
ment Using a Svnthetic Job Stream,” Proc. 1971 FJCC, AFIPS
Press, Vol. 39

12. Strauss, J. C., “A Benchmark Study,” Proc. 1972 FJCC, AFIPS
Press, Vol. 41, Part 11

*
’

~r

2. 3Rccipient's Accegsion No.

4. Title and Subtitle

BIBL I .C DATA l-ﬁ‘m’ﬁ»\—7
SHEET FCCTS/TR-77/97 \
_‘“—!

An Experiment in the Use of Synthetic Programs for System 5.

M@;M 'ayam]

Benchmarking

iy to

. Performing
Software Development Division
ADPE Selection Office.
Department of the Navy
Washington, D. C. 20376

Baird, Margare /Cook Arnole/ﬁohnson .

Performing Organization Rept.
No.

10. Project/Task/Work Unit No.

12. Sponsoring Organization Name and Address
ADPE Selection Office
Department of the Navy
Washington, D. C. 20376

w @9/94/‘ 11. Contract/Grant No.
/

13. Type of Report & Period
Covered

14.

15. Supplementary Notes

synthetic programs for system benchmarking.
are discussed here.

X

l'yAbstracts
'he Federal COBOL Compiler Testing Service has experimented with the use of

The results of this experiment

17. Key Words and Document Analysis. 17a. Descriptors

COBOL

Benchmarking
Performance Evaluation
Synthetic Programs

17b. Identifiers /Open-Ended Terms

17c. COSATI Field/Group 09/02

ARCESSION for

I wrre Wite Sec! !

' 088 Bufi Sectian [|
UHARKOBACED 0 !
JUSTIFICATION.. .

o

mwmaa/mawn sy
T UBL AYAIL. an/ur SPRRLL

18. Availability Statement

Release Unlimited.

19. Security Class (This
Report)
UNCLASSIFIED 8

21. No. of Pages

FORM NTIS5-35 (REV. 3-72)

20. .?)ccuri(y Class (This 22. Price
age
UNCLASSIFIED %
THIS FORM MAY BE REPRODUCED 5{02’ 1/6 ? SCOMM-OC 1408

